VB Script Code Sample #6 (Merging Contact Data to One of a Choice of Word Templates

Updated 9-26-2000

Helen Feddema (hfeddema@hvc.rr.com)

Introduction

This code sample illustrates creating a Word letter from a single contact to one of a choice of Word templates. A custom Outlook contact form has a command button that opens a File Open dialog (powered by the Common Dialog control) that lets the user select a Word template to use for generating a letter to the contact.

If you place a Common Dialog control on an Outlook form (or another type of form), you won’t see the control when you switch to form view. This control does not have an interface; rather, you use it in code to open a standard File Open dialog (or another dialog), which provides a Windows-standard interface for selecting a file. In this case, the selected file is a Word template, which has custom document properties set up to accept data from an Outlook contact.

The Common Dialog Control

This form uses the Windows Common Dialog control (COMDLG32.OCX). This is the standard control that comes with either Windows 98 or Office 97 (I'm not sure which), not the special Common Dialog Control v. 5.0 that was required for Outlook 97 and Outlook 98 through Beta 2.

To place a Common Dialog control on an Outlook form, follow the steps below:

1. Switch the form to design view (Tools|Forms|Design This Form).

2. Click the page where you want to place the control.

3. If the Toolbox is not visible, click the Control Toolbox button on the form’s toolbar.

4. Right-click the grey toolbox background, and select Custom Controls from the context menu.

[image: image1.png]
Figure 1. Selecting a custom ActiveX control for the Outlook Control Toolbox

5. Check the COMMON DIALOGS CONTROL selection in the Additional Controls toolbox (the screen shot is for Outlook 98; for Outlook 2000, the selection is Microsoft Common Dialog Control, version 6.0). However, for any version of Outlook or Office, it is possible that you may have a different version of this control, with a slightly different name, depending on what other applications you have installed.

[image: image2.png]
Figure 2. Checking the Common Dialog control in the Additional Controls dialog

6. After clicking OK, a new tool for the Common Dialog control appears in the Toolbox, and you can drag it to the form to place a Common Dialog control on the form.

[image: image3.png]
Figure 3. Placing a Common Dialog control on an Outlook form

Many Microsoft applications install a version of this control, and even though the form with the Common Dialog control may work on your system, it may not work on another person’s system. For what it’s worth, at the present time, on my Dell computer, this form (with the version of the Common Dialog control illustrated in Figure 2) works in both Windows 98 2nd edition/Office 97 SR-2 with Outlook 98 and Windows Millennium/Office 2000 (running in different boot partitions).

The Common Dialog control does have a superior interface, and if the form works on your system, you can enjoy using it; but if it doesn’t work, you may have to use another method, such as filling the combo box with a hard-coded value list, or creating an array filled with file names and writing the array to the combo box’s List property.

Word Custom Document Properties

VBS code on the CommonDialog.oft form writes address data (business or home, as selected in the option group) to custom document properties in a new Word document created from the selected template. You work with custom document properties on the custom page of the Word document or template properties sheet, as shown in Figure 4. The template provided with this article already has the document properties referenced in the Outlook VBS code; you can create your own additional Word templates (in Word), by copying my DocProps.dot (which has the Word custom doc properties already set up as needed), and altering the copies as desired, or by manually creating the needed document properties in your existing templates. Make sure you create templates – with the .dot extension – and not just Word documents – with the .doc extension – as the code only works with templates. Although it’s not required, it will be easier to make a selection if all the templates with the required document properties are stored in one folder, such as the recommended Test Letters folder.

[image: image4.png]
Figure 4. Custom Document Properties for a Word Letter

Setup

Put the DocProps.dot template in a folder called “Test Letters” under the \Templates folder, and put the CommonDialog.oft and Reset Message Class.oft files in your Templates\Outlook folder (or wherever you want).

Using the Form

1. Double-click the CommonDialog.oft Outlook template to create an instance of it.

2. Click on the Common Dialog tab. Select either the Business or Home address type option.

[image: image5.png]
Figure 5. The custom Outlook form’s Common Dialog page

3. If desired, enter some custom data in the Custom Field text box, and click the command button to open a File Open dialog where you can select a Word template.

[image: image6.png]
Figure 6. The Choose a Letter custom File Open dialog

4. Figure 7 shows a Word letter filled with data from the sample contact. The DocProperty fields that display the Outlook data are shown with a grey background.

[image: image7.png]
Figure 7. A Word letter filled with Outlook contact data

Using the Form for Your Contacts

If you want to use this form (or your version of it) for your existing contacts, you will need to upgrade the contacts in your Contacts folder (or another folder) to use this form, after publishing the form to your Personal Forms Library (or Organizational Forms Library). Use the Reset Message Class form for this purpose, as described below:

1. Double-click the CommonDialog.oft Outlook template to create an instance of it.

2. If the macro virus warning message appears, click the Enable Macros button to open the form.

3. Publish the form to your Personal Forms Library (or Organizational Forms Library). Start by selecting Tools|Forms|Publish Form.

[image: image8.png]
Figure 8. Selecting the Publish Form menu entry

4. Select Personal Forms Library from the Look In box, then enter CommonDialog as the Display name for the form (the Form name box will be automatically filled in with the same name), then click the Publish button.

[image: image9.png]
Figure 9. Publishing the CommonDialog form to the Personal Forms Library

5. Close the CommonDialog form (don’t save it – you have published it, and you don’t need to save this instance of the form).

6. Next, double-click the Reset Message Class.oft Outlook template to open an instance of the form.

7. If the macro virus warning message appears, click the Enable Macros button to open the form.

8. Use the Select Folder button to select the contacts folder you want to upgrade to the new form.

9. Select the Change option in the Change Form or Upgrade? option group.

10. If your contacts use the default Contact form, leave the Old Message Class entry as is (IPM.Contact). Otherwise, enter the name of the custom Contact form you want to replace.

11. Enter “IPM.Contact.CommonDialog” as the New Message Class entry.

12. Click the Proceed button to start the upgrade.

[image: image10.png]
Figure 10. The Reset Message Class form upgrading contacts to the CommonDialog form

13. You will get an “All Items in Foldername processed” message when all the items have been upgraded.

VB Script Code for CommonDialog Form

The commented-out message boxes are for purposes of debugging, since Outlook VBS doesn’t support the Debug.Print statement. Just remove the single quote before MsgBox to make them pop up.

Sub cmdSelectDoc_Click

Dim strLetter

Dim strDate

Dim strSalutation

Dim strTemplatePath

Dim appWord

Dim docs

Dim itm

Dim pgs

Dim pg

Dim ctls

Dim ctlDialog

strDate = CStr(Date())

'MsgBox "Date: " & strDate

Set itm = Item.GetInspector

Set pgs = itm.ModifiedFormPages

Set pg = pgs("Common Dialog")

Set ctls = pg.Controls

Set ctlDialog = ctls("ocxDialog")

Open Word invisibly, retrieving current Word object if available

On Error Resume Next

Set appWord = GetObject(, "Word.Application")

If Err = 429 Then

Item.Application.CreateObject("Word.Application")

Err = 0

End If

Pick up templates folder from Word Options dialog

strTemplatePath = appWord.Options.DefaultFilePath(2) & "\"

‘MsgBox "Templates folder: " & strTemplatePath

strTemplatePath = strTemplatePath & "Test Letters"

'MsgBox "Template folder: " & strTemplatePath

Set properties for dialog box

ctlDialog.DialogTitle = "Choose a Letter"

ctlDialog.FileName = "DocProps.dot"

ctlDialog.InitDir = strTemplatePath

ctlDialog.Filter = "Word templates (*.dot)|*.dot"

Open common dialog

ctlDialog.ShowOpen

Retrieve name of template chosen in dialog

strLetter = ctlDialog.FileName

If Len(strLetter) < 0 Then

MsgBox "No letter chosen -- exiting"

Exit Sub

End If

If Item.Title <> "" then

strSalutation = Item.Title & " " & Item.LastName

Else

strSalutation = "Mr. " & Item.LastName

End If

Open a new letter based on the selected template

Set docs = appWord.Documents

docs.Add strLetter

appWord.Visible = True

Write info from contact item to Word custom doc properties, using either business or home address information

Set prps = appWord.ActiveDocument.CustomDocumentProperties

prps.Item("TodayDate").Value = strDate

prps.Item("Name").Value = Item.FullName

If Item.UserProperties("AddressType") = "Business" Then

prps.Item("CompanyName").Value = Item.CompanyName

If Len(Item.BusinessAddress) > 0 Then

prps.Item("Address").Value = Item.BusinessAddress

End If

ElseIf Item.UserProperties("AddressType") = "Home" Then

If Len(Item.HomeAddress) > 0 Then

prps.Item("Address").Value = Item.HomeAddress

End If

appWord.ActiveDocument.Bookmarks("CompanyName").Select

appWord.Selection.Delete 1, 1

End If

prps.Item("Salutation").Value = strSalutation

prps.Item("CustomField").Value = Item.UserProperties("CustomField")

appWord.ActiveDocument.Fields.Update

appWord.Activate

End Sub

VB Script Code for Reset Message Class Form

Dim nms

Dim fld

Dim lbl

Dim strChoice

Dim oldClass

Dim newClass

Dim ItemCount

Dim itm

Dim ctlOld

Dim ctlNew

Sub cmdSetFolder_Click()

Set nms = Application.GetNameSpace("MAPI")

Set fld = nms.PickFolder

Set ctlFolder = GetInspector.ModifiedFormPages("Message").txtFolder

ctlFolder.Value = fld.Name

End Sub

Function Item_Open()

Set lbl = GetInspector.ModifiedFormPages("Message").lblCounter

lbl.Caption = "Ready to go"

Set fld = Application.ActiveExplorer.CurrentFolder

Set ctlFolder = GetInspector.ModifiedFormPages("Message").txtFolder

Set ctlOld = GetInspector.ModifiedFormPages("Message").txtOldClass

Set ctlNew = GetInspector.ModifiedFormPages("Message").txtNewClass

ctlFolder.Value = fld.Name

ctlOld.Enabled = False

End Function

Sub cmdReset_Click

Set lbl = GetInspector.ModifiedFormPages("Message").lblCounter

Set ctlOld = GetInspector.ModifiedFormPages("Message").txtOldClass

Set ctlNew = GetInspector.ModifiedFormPages("Message").txtNewClass

strChoice = Item.UserProperties("Choice")

oldClass = GetInspector.ModifiedFormPages("Message").txtOldClass

newClass = GetInspector.ModifiedFormPages("Message").txtNewClass

ItemCount = fld.Items.Count

Select Case strChoice

Case "Upgrade"

ctlOld.Enabled = False

MsgBox "Upgrading items in " & fld.Name & " to new version of form"

For n = 1 to ItemCount

ctlOld.Enabled = True

lbl.Caption = "Processing item " & n & " of " & ItemCount

Set itm = fld.Items(CInt(n))

'MsgBox "Current message class: " & itm.MessageClass & "; changing to " & newClass

itm.MessageClass = newClass

itm.Save

Next

Case "Change"

MsgBox "Changing items in " & fld.Name & " to new form"

For n = 1 to ItemCount

lbl.Caption = "Processing item " & n & " of " & ItemCount

Set itm = fld.Items(CInt(n))

If itm.MessageClass = oldClass Then

itm.MessageClass = newClass

itm.Save

End If

Next

End Select

MsgBox "All items in " & fld.Name & " processed"

lbl.Caption = ItemCount & " items processed"

End Sub

Sub Item_CustomPropertyChange(ByVal strName)

Set ctlOld = GetInspector.ModifiedFormPages("Message").txtOldClass

Select Case strName

Case "Choice"

strChoice = Item.UserProperties("Choice")

If strChoice = "Upgrade" Then

ctlOld.Enabled = False

ElseIf strChoice = "Change" Then

ctlOld.Enabled = True

End If

End Select

End Sub

Contents of Zip File

	File Name
	File Type
	Destination Folder

	CommonDialog.oft
	Outlook 98 template
	\Templates\Outlook

	Reset Message Class.oft
	Outlook 98 template
	\Templates\Outlook

	DocProps.dot
	Word 97 template (works in Word 2000)
	\Templates\Test Letters

	CommonDialog Control Checklist.doc
	Word 97 document
	\Documents\Outlook (or wherever you want)

	VB Script Code Sample #6 -- Merging a Contact’s Data to One of a Choice of Word Templates
	Word 97 document
	\Documents\Outlook (or wherever you want)

VB Script Code Sample #6

Page 12 of 12

